Haar Wavelet Quasilinearization Approach for Solving Nonlinear Boundary Value Problems
نویسندگان
چکیده
Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More accurate solutions are obtained by wavelet decomposition in the form of a multiresolution analysis of the function which represents solution of boundary value problems. Through this analysis, solutions are found on the coarse grid points and refined towards higher accuracy by increasing the level of the Haar wavelets. A distinctive feature of the proposed method is its simplicity and applicability for a variety of boundary conditions. Numerical tests are performed to check the applicability and efficiency. C++ program is developed to find the wavelet solution.
منابع مشابه
Numerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملNumerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method
In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of...
متن کاملA new approach for solving optimal nonlinear control problems using decriminalization and rationalized Haar functions
This paper presents a numerical method based on quasilinearization and rationalized Haar functions for solving nonlinear optimal control problems including terminal state constraints, state and control inequality constraints. The optimal control problem is converted into a sequence of quadratic programming problems. The rationalized Haar functions with unknown coefficients are used to approxima...
متن کاملA Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation
In this paper, an efficient numerical scheme based on uniform Haar wavelets and the quasilinearization process is proposed for the numerical simulation of time dependent nonlinear Burgers’ equation. The equation has great importance in many physical problems such as fluid dynamics, turbulence, sound waves in a viscous medium etc. The Haar wavelet basis permits to enlarge the class of functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American J. Computational Mathematics
دوره 1 شماره
صفحات -
تاریخ انتشار 2011